7 research outputs found

    Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

    Full text link
    [EN] Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxy-methamphetamine (MDMA).The authors acknowledge the financial support from the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (project GVA/2014/13). B. L-T. is grateful to the Ministerio de Economia y Competitividad for her PhD grant. A. B. thanks the Spanish Government for the financial support "Juan de la CiervaIncorporacion'' (IJCI-2014-21534). J. O. J. thanks The Danish Natural Science Research Council (FNU, project no. 11-106744) and the Villum Foundation for financial support.Lozano-Torres, B.; Pascual, L.; Bernardos Bau, A.; Marcos Martínez, MD.; Jeppesen, JO.; Salinas Soler, Y.; Martínez-Máñez, R.... (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications. 53(25):3559-3562. https://doi.org/10.1039/c7cc00186jS355935625325McLELLAN, A. T., LUBORSKY, L., WOODY, G. E., & O??BRIEN, C. P. (1980). An Improved Diagnostic Evaluation Instrument for Substance Abuse Patients. The Journal of Nervous and Mental Disease, 168(1), 26-33. doi:10.1097/00005053-198001000-00006Moonzwe, L. S., Schensul, J. J., & Kostick, K. M. (2011). The Role of MDMA (Ecstasy) in Coping with Negative Life Situations Among Urban Young Adults. Journal of Psychoactive Drugs, 43(3), 199-210. doi:10.1080/02791072.2011.605671Meyer, J. (2013). 3,4-methylenedioxymethamphetamine (MDMA): current perspectives. Substance Abuse and Rehabilitation, 83. doi:10.2147/sar.s37258Greene, S. L., Kerr, F., & Braitberg, G. (2008). Review article: Amphetamines and related drugs of abuse. Emergency Medicine Australasia, 20(5), 391-402. doi:10.1111/j.1742-6723.2008.01114.xCumba, L. R., Smith, J. P., Zuway, K. Y., Sutcliffe, O. B., do Carmo, D. R., & Banks, C. E. (2016). Forensic electrochemistry: simultaneous voltammetric detection of MDMA and its fatal counterpart «Dr Death» (PMA). Analytical Methods, 8(1), 142-152. doi:10.1039/c5ay02924dPentney, A. R. (2001). An Exploration of the History and Controversies Surrounding MDMA and MDA. Journal of Psychoactive Drugs, 33(3), 213-221. doi:10.1080/02791072.2001.10400568De Sousa Fernandes Perna, E. B., Theunissen, E. L., Kuypers, K. P. C., Heckman, P., de la Torre, R., Farre, M., & Ramaekers, J. G. (2014). Memory and mood during MDMA intoxication, with and without memantine pretreatment. Neuropharmacology, 87, 198-205. doi:10.1016/j.neuropharm.2014.03.008Ferraz-de-Paula, V., Ribeiro, A., Souza-Queiroz, J., Pinheiro, M. L., Vecina, J. F., Souza, D. P. M., … Palermo-Neto, J. (2014). 3,4-Methylenedioxymethamphetamine (MDMA – Ecstasy) Decreases Neutrophil Activity Through the Glucocorticoid Pathway and Impairs Host Resistance to Listeria Monocytogenes Infection in Mice. Journal of Neuroimmune Pharmacology, 9(5), 690-702. doi:10.1007/s11481-014-9562-0Kraner, J. C., McCoy, D. J., Evans, M. A., Evans, L. E., & Sweeney, B. J. (2001). Fatalities Caused by the MDMA-Related Drug Paramethoxyamphetamine (PMA). Journal of Analytical Toxicology, 25(7), 645-648. doi:10.1093/jat/25.7.645Buckley, N. A. (2012). Methylenedioxymethamphetamine (Ecstasy, MDMA). Medical Toxicology of Drug Abuse, 126-155. doi:10.1002/9781118105955.ch9Abraham, T. T., Barnes, A. J., Lowe, R. H., Kolbrich Spargo, E. A., Milman, G., Pirnay, S. O., … Huestis, M. A. (2009). Urinary MDMA, MDA, HMMA, and HMA Excretion Following Controlled MDMA Administration to Humans. Journal of Analytical Toxicology, 33(8), 439-446. doi:10.1093/jat/33.8.439Pichini, S., Navarro, M., Pacifici, R., Zuccaro, P., Ortuño, J., Farré, M., … de la Torre, R. (2003). Usefulness of Sweat Testing for the Detection of MDMA after a Single-Dose Administration*. Journal of Analytical Toxicology, 27(5), 294-303. doi:10.1093/jat/27.5.294Cuypers, E., Bonneure, A.-J., & Tytgat, J. (2015). The use of presumptive color tests for new psychoactive substances. Drug Testing and Analysis, 8(1), 136-140. doi:10.1002/dta.1847Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Slowing, I. I., Vivero-Escoto, J. L., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous silica nanoparticles: structural design and applications. Journal of Materials Chemistry, 20(37), 7924. doi:10.1039/c0jm00554aColl, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243Panman, M. R., Bodis, P., Shaw, D. J., Bakker, B. H., Newton, A. C., Kay, E. R., … Woutersen, S. (2010). Operation Mechanism of a Molecular Machine Revealed Using Time-Resolved Vibrational Spectroscopy. Science, 328(5983), 1255-1258. doi:10.1126/science.1187967Durola, F., Sauvage, J.-P., & Wenger, O. S. (2010). The magic effect of endocyclic but non-sterically hindering biisoquinoline chelates: From fast-moving molecular shuttles to [3]rotaxanes. Coordination Chemistry Reviews, 254(15-16), 1748-1759. doi:10.1016/j.ccr.2009.09.034Avellini, T., Li, H., Coskun, A., Barin, G., Trabolsi, A., Basuray, A. N., … Venturi, M. (2012). Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. Angewandte Chemie International Edition, 51(7), 1611-1615. doi:10.1002/anie.201107618Fahrenbach, A. C., Bruns, C. J., Li, H., Trabolsi, A., Coskun, A., & Stoddart, J. F. (2013). Ground-State Kinetics of Bistable Redox-Active Donor–Acceptor Mechanically Interlocked Molecules. Accounts of Chemical Research, 47(2), 482-493. doi:10.1021/ar400161zYang, W., Li, Y., Liu, H., Chi, L., & Li, Y. (2012). Design and Assembly of Rotaxane-Based Molecular Switches and Machines. Small, 8(4), 504-516. doi:10.1002/smll.201101738Xue, M., Yang, Y., Chi, X., Yan, X., & Huang, F. (2015). Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chemical Reviews, 115(15), 7398-7501. doi:10.1021/cr5005869Odell, B., Reddington, M. V., Slawin, A. M. Z., Spencer, N., Stoddart, J. F., & Williams, D. J. (1988). Cyclobis(paraquat-p-phenylene). A Tetracationic Multipurpose Receptor. Angewandte Chemie International Edition in English, 27(11), 1547-1550. doi:10.1002/anie.198815471Gómez-López, M., Preece, J. A., & Stoddart, J. F. (1996). The art and science of self-assembling molecular machines. Nanotechnology, 7(3), 183-192. doi:10.1088/0957-4484/7/3/004Bernardo, A. R., Stoddart, J. F., & Kaifer, A. E. (1992). Cyclobis(paraquat-p-phenylene) as a synthetic receptor for electron-rich aromatic compounds: electrochemical and spectroscopic studies of neurotransmitter binding. Journal of the American Chemical Society, 114(26), 10624-10631. doi:10.1021/ja00052a069Anelli, P. L., Spencer, N., & Stoddart, J. F. (1991). A molecular shuttle. Journal of the American Chemical Society, 113(13), 5131-5133. doi:10.1021/ja00013a096Ashton, P. R., Brown, C. L., Chrystal, E. J. T., Goodnow, T. T., Kaifer, A. E., Parry, K. P., … Williams, D. J. (1991). Self-Assembling[3]Catenanes. Angewandte Chemie International Edition in English, 30(8), 1039-1042. doi:10.1002/anie.199110391Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424uPatel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086Pascual, L., Sayed, S. E., Martínez-Máñez, R., Costero, A. M., Gil, S., Gaviña, P., & Sancenón, F. (2016). Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 18(21), 5548-5551. doi:10.1021/acs.orglett.6b02793El Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405

    Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials

    Full text link
    [EN] A hybrid capped mesoporous material, which was selectively opened in the presence of Tetryl and TNT, has been synthesised and used for the fluorogenic recognition of these nitroaromatic explosives.Financial support from the Spanish Government (project MAT2012-38429-C04-01) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. Y.S. and E.P. are grateful to the Spanish Ministry of Science and Innovation for their grants. A. A. also thanks the Generalitat Valenciana for his Santiago Grisolia fellowship.Salinas Soler, Y.; Agostini, A.; Pérez Esteve, E.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Soto Camino, J.... (2013). Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry. 1(11):3561-3564. https://doi.org/10.1039/C3TA01438JS35613564111Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of Hazardous Materials, 144(1-2), 15-28. doi:10.1016/j.jhazmat.2007.02.018Schulte-Ladbeck, R., Vogel, M., & Karst, U. (2006). Recent methods for the determination of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 386(3), 559-565. doi:10.1007/s00216-006-0579-ySmith, R. G., D’Souza, N., & Nicklin, S. (2008). A review of biosensors and biologically-inspired systems for explosives detection. The Analyst, 133(5), 571. doi:10.1039/b717933mMoore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:33.0.co;2-7Wallis, E., Griffin, T. M., Popkie, Jr., N., Eagan, M. A., McAtee, R. F., Vrazel, D., & McKinly, J. (2005). Instrument response measurements of ion mobility spectrometers in situ: maintaining optimal system performance of fielded systems. Chemical and Biological Sensing VI. doi:10.1117/12.609920Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: from color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543. doi:10.1039/b809631gForzani, E. S., Lu, D., Leright, M. J., Aguilar, A. D., Tsow, F., Iglesias, R. A., … Tao, N. (2009). A Hybrid Electrochemical−Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 131(4), 1390-1391. doi:10.1021/ja809104hSalinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev., 41(3), 1261-1296. doi:10.1039/c1cs15173hThomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339Gao, D., Wang, Z., Liu, B., Ni, L., Wu, M., & Zhang, Z. (2008). Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT. Analytical Chemistry, 80(22), 8545-8553. doi:10.1021/ac8014356Zhang, S., Lü, F., Gao, L., Ding, L., & Fang, Y. (2007). Fluorescent Sensors for Nitroaromatic Compounds Based on Monolayer Assembly of Polycyclic Aromatics. Langmuir, 23(3), 1584-1590. doi:10.1021/la062773sHughes, A. D., Glenn, I. C., Patrick, A. D., Ellington, A., & Anslyn, E. V. (2008). A Pattern Recognition Based Fluorescence Quenching Assay for the Detection and Identification of Nitrated Explosive Analytes. Chemistry - A European Journal, 14(6), 1822-1827. doi:10.1002/chem.200701546Vijayakumar, C., Tobin, G., Schmitt, W., Kim, M.-J., & Takeuchi, M. (2010). Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency. Chemical Communications, 46(6), 874. doi:10.1039/b921520dSalinas, Y., Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez de Diego, A. (2011). Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications, 47(43), 11885. doi:10.1039/c1cc14877jCliment, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dCabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:113.0.co;2-5Felix, F., Ferguson, J., Guedel, H. U., & Ludi, A. (1980). The electronic spectrum of tris(2,2’-bipyridine)ruthenium(2+). Journal of the American Chemical Society, 102(12), 4096-4102. doi:10.1021/ja00532a019Lytle, F. E., & Hercules, D. M. (1969). Luminescence of tris(2,2’-bipyridine)ruthenium(II) dichloride. Journal of the American Chemical Society, 91(2), 253-257. doi:10.1021/ja01030a00

    Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactions

    Full text link
    La presente tesis doctoral titulada ¿Materiales funcionales híbridos para el reconocimiento óptico de explosivos nitroaromáticos mediante interacciones supramoleculares¿ se basa en la combinación de principios de Química Supramolecular y de Ciencia de los Materiales para el diseño y desarrollo de nuevos materiales híbridos orgánico-inorgánicos funcionales capaces de detectar explosivos nitroaromáticos en disolución. En primer lugar se realizó una búsqueda bibliográfica exhaustiva de todos los sensores ópticos (cromogénicos y fluorogénicos) descritos en la bibliografía y que abarca el periodo desde 1947 hasta 2011. Los resultados de la búsqueda están reflejados en el capítulo 2 de esta tesis. El primer material híbrido preparado está basado en la aplicación de la aproximación de los canales iónicos y, para ello, emplea nanopartículas de sílice funcionalizadas con unidades reactivas y unidades coordinantes (ver capítulo 3). Este soporte inorgánico se funcionaliza con tioles (unidad reactiva) y una poliamina lineal (unidad coordinante) y se estudia el transporte de una escuaridina (colorante) a la superficie de la nanopartícula en presencia de diferentes explosivos. En ausencia de explosivos, la escuaridina (color azul y fluorescencia intensa) es capaz de reaccionar con los tioles anclados en la superficie decolorando la disolución. En presencia de explosivos nitroaromáticos se produce una inhibición de la reacción escuaridinatiol y la suspensión permanece azul. Esta inhibición es debida a la formación de complejos de transferencia de carga entre las poliaminas y los explosivos nitroaromáticos. En la segunda parte de esta tesis doctoral se han preparado materiales híbridos con cavidades biomiméticas basados en el empleo de MCM-41 como soporte inorgánico mesoporoso (ver capítulo 4). Para ello se ha procedido al anclaje de tres fluoróforos (pireno, dansilo y fluoresceína) en el interior de los poros del soporte inorgánico y, posteriormente, se ha hidrofobado el interior de material mediante la reacción de los silanoles superficiales con 1,1,1,3,3,3-hexametildisilazano. Mediante este procedimiento se consiguen cavidades hidrófobas que tienen en su interior los fluoróforos. Estos materiales son fluorescentes cuando se suspenden en acetonitrilo mientras que cuando se añaden explosivos nitroaromáticos a estas suspensiones se observa una desactivación de la emisión muy marcada. Esta desactivación de la emisión es debida a la inclusión de los explosivos nitroaromáticos en la cavidad biomimética y a la interacción de estas moléculas (mediante interacciones de ¿- stacking) con el fluoróforo. Una característica importante de estos materiales híbridos sensores es que pueden ser reutilizados después de la extracción del explosivo de las cavidades hidrofóbicas. En la última parte de esta tesis doctoral se han desarrollado materiales híbridos orgánicoinorgánicos funcionalizados con ¿puertas moleculares¿ que han sido empleados también para detectar explosivos nitroaromáticos (ver capítulo 5). Para la preparación de estos materiales también se ha empleado MCM-41 como soporte inorgánico. En primer lugar, los poros del soporte inorgánico se cargan con un colorante/fluoróforo seleccionado. En una segunda etapa, la superficie externa del material cargado se ha funcionalizado con ciertas moléculas con carácter electrón dador (pireno y ciertos derivados del tetratiafulvaleno). Estas moléculas ricas en electrones forman una monocapa muy densa (debida a las interacciones dipolo-dipolo entre estas especies) alrededor de los poros que inhibe la liberación del colorante. En presencia de explosivos nitroaromáticos se produce la ruptura de la monocapa, debido a interacciones de ¿-stacking con las moléculas ricas en electrones, con la consecuencia de una liberación del colorante atrapado en el interior de los poros observándose una respuesta cromo-fluorogénicaSalinas Soler, Y. (2013). Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactions [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31663TESISPremios Extraordinarios de tesis doctorale

    Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives

    Full text link
    [EN] Fluorescent organic-inorganic mesoporous hybrid materials have been prepared and characterised, and their behaviour against nitroaromatic explosives have been tested. MCM-41 silica was used as an inorganic scaffold and pyrene (P derivative containing trialkoxysilane moieties), dansyl and fluorescein (D and F derivatives also containing trialkoxysilane groups, respectively) fluorophores have been anchored on hybrid materials by a co-condensation method to obtain a homogenous distribution of dyes into the pores of the support. Six sensing materials have been prepared, of which SP, SD, SF were hydrophilic and SPh, SDh, SFh were hydrophobic. Template-free hydrophilic materials (SP, SD, SF) were obtained after repeated NH4NO3/ethanol extractions under temperature from as-synthesised (MP, MD and MF supports, respectively) solids. Hydrophobic materials (SPh, SDh, SFh) were prepared by using excess 1,1,1,3,3,3-hexamethyldisilazane with template-free hydrophilic (SP, SD and SF) materials. The six final materials displayed the typical emission bands of the grafted fluorophores. In particular, SP and SPh show the typical pyrene monomer (370-420nm) and excimer (430-600nm) emissions. SD and SDh exhibit the broad dansyl fluorescence band in the 450-600nm range, whereas solids SF and SFh present sharp fluorescein emission centred at 525nm. The fluorescent behaviour of the six final materials was tested in the presence of explosives (pentaerythritol tetranitrate (PETN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), nitrobenzene (NB), 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4,6-trinitrophenylmethylnitramine (Tetryl) and picric acid (PA)). Only nitroaromatic compounds were able to induce emission quenching. As a general trend, the quenching degree depended on the nature of the final material. The best response was obtained with explosives PA and Tetryl, which were able to significantly quench the emission of the sensing supports. The observed quenching was ascribed to the - stacking interactions between the electron-donor fluorophores and the electron-withdrawing nitroaromatic explosives. When using SPh for Tetryl and PA, the limits of detection were 8.5 and 1.4ppm, respectively, whereas they were 14.4 and 1.2ppm for SDh. Principal component analysis algorithms were applied to the fluorescence measurements taken with the six hybrid materials and the seven explosives. The obtained score plot showed well-defined clusters for the seven explosives tested. Finally, solid SDh was applied to detect trace amounts of Tetryl in soil samples with good results.Financial support from the Spanish Government (Project MAT2012-38429-C04-01) and the Generalitat Valencia (Project PROMETEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation for her grant. I. C is also grateful to the Universidad Politecnica de Valencia for her grant.Sarkar, K.; Salinas Soler, Y.; Campos Sánchez, I.; Martínez Mañez, R.; Marcos Martínez, MD.; Sancenón Galarza, F.; Amoros Del Toro, P. (2013). Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives. ChemPlusChem. 78(7):684-694. https://doi.org/10.1002/cplu.20130014068469478

    A chromogenic sensor array for boiled marinated turkey freshness monitoring

    Full text link
    A chromogenic array for monitoring boiled marinated turkey meat freshness in a modified packaging atmosphere (30% CO2, 70% N2) has been developed. The chromogenic array was combined with commodity tools such as digital camera and Photoshop to extract and analyse the colour changes. The array was composed of 16 sensing materials prepared through the combination of 13 indicators (including pH indicators, nucleophilic sensing dyes, etc.) and three different inorganic supports (i.e., UVM-7, alumina and silica gel). The chromogenic data obtained from the array showed characteristic fingerprints for each sampling day (0, 3, 10, 17, 24, 31, 38 and 45 days post-package). Statistical analysis by HCA of the chromogenic data allowed classifying the samples as fresh , not fresh and not edible . Besides, microbiological and sensorial determinations on the packaged samples were also carried out. From these studies a shelf life of 38 days at 4 °C was determined. Colour differences from the chromogenic array were employed to create PLS models for aerobic mesophilic bacteria count, sensory score and storage time with quite good results.We thank the financial support from the Spanish Government (projects CIT-060000-2008-14 and MAT2012-38429-C04), the Generalitat Valenciana (PROMETEO/2009/016) and UPV (PAID 2414). Y.S. also thanks the Spanish Ministry of Science for a PhD fellowship.Salinas Soler, Y.; Ros Lis, JV.; Vivancos Bono, JL.; Martínez Mañez, R.; Aucejo Romero, S.; Herranz, N.; Lorente, I.... (2014). A chromogenic sensor array for boiled marinated turkey freshness monitoring. Sensors and Actuators B: Chemical. 190:326-333. https://doi.org/10.1016/j.snb.2013.08.07532633319

    A novel colorimetric sensor array for monitoring fresh pork sausages spoilage

    Full text link
    We report herein the development of a new optoelectronic nose composed of seven sensing materials prepared by the incorporation of pH indicators and chromogenic reagents selective to metabolites into inorganic materials (UVM-7 and alumina). The nose has been applied to monitor fresh pork sausage ageing. Sausages were packaged together with the disposable array in a modified packaging atmosphere (30% CO2, 70% N2) and colour changes were measured at seven day intervals. Simultaneously, microbiological and sensory analyses were performed. Colour modulations of the chromogenic array were processed with standard analytical tools, including principal component analysis (PCA) and partial least squares (PLS). According to the PCA, the array was able to monitor the sausage spoilage process and to distinguish between each sampled day. Moreover, the PLS statistical analysis of the chromogenic data displayed a linear correlation between the predicted and measured values of the storage days, mesophilic bacteria (cfu g−1) and the sensory score with regression coefficients of 0.9300, 0.9472 and 0.9381, respectively.The financial support from the Spanish Government (projects CIT-060000-2008-14 and MAT2009-14564-004-01), the Generalitat Valenciana (PROMETEO/2009/016) and UPV (PAID 2414) is gratefully acknowledged. Y.S. also thanks the Spanish Ministry of Science for a PhD fellowship.Salinas Soler, Y.; Ros Lis, JV.; Vivancos Bono, JL.; Martínez Mañez, R.; Marcos Martínez, MD.; Aucejo Romero, S.; Herranz, N.... (2014). A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control. 35(1):166-176. https://doi.org/10.1016/j.foodcont.2013.06.043S16617635

    Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles

    Full text link
    Silica nanoparticles containing polyamines and thiol groups have been used as probes for the selective detection of Tetryl. © 2011 The Royal Society of Chemistry.Financial support from the Spanish Government (project MAT2009-14564-C04-01) and Generalitat Valencia (project PRO-METEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation for a grant.Salinas Soler, Y.; Climent Terol, E.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Soto Camino, J.; Costero, AM.... (2011). Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications. 47:11885-11887. https://doi.org/10.1039/c1cc14877jS118851188747Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of Hazardous Materials, 144(1-2), 15-28. doi:10.1016/j.jhazmat.2007.02.018Schulte-Ladbeck, R., Vogel, M., & Karst, U. (2006). Recent methods for the determination of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 386(3), 559-565. doi:10.1007/s00216-006-0579-ySmith, R. G., D’Souza, N., & Nicklin, S. (2008). A review of biosensors and biologically-inspired systems for explosives detection. The Analyst, 133(5), 571. doi:10.1039/b717933mMoore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:33.0.co;2-7Forzani, E. S., Lu, D., Leright, M. J., Aguilar, A. D., Tsow, F., Iglesias, R. A., … Tao, N. (2009). A Hybrid Electrochemical−Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 131(4), 1390-1391. doi:10.1021/ja809104hThomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: from color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543. doi:10.1039/b809631gPark, J. S., Le Derf, F., Bejger, C. M., Lynch, V. M., Sessler, J. L., Nielsen, K. A., … Jeppesen, J. O. (2009). Positive Homotropic Allosteric Receptors for Neutral Guests: Annulated Tetrathiafulvalene-Calix[4]pyrroles as Colorimetric Chemosensors for Nitroaromatic Explosives. Chemistry - A European Journal, 16(3), 848-854. doi:10.1002/chem.200902924Malashikhin, S., & Finney, N. S. (2008). Fluorescent Signaling Based on Sulfoxide Profluorophores: Application to the Visual Detection of the Explosive TATP. Journal of the American Chemical Society, 130(39), 12846-12847. doi:10.1021/ja802989vCliment, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dSugawara, M., Kojima, K., Sazawa, H., & Umezawa, Y. (1987). Ion-channel sensors. Analytical Chemistry, 59(24), 2842-2846. doi:10.1021/ac00151a004Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Ponnu, A., Edwards, N. Y., & Anslyn, E. V. (2008). Pattern recognition based identification of nitrated explosives. New Journal of Chemistry, 32(5), 848. doi:10.1039/b801589aMontalti, M., Prodi, L., Zaccheroni, N., & Falini, G. (2002). Solvent-Induced Modulation of Collective Photophysical Processes in Fluorescent Silica Nanoparticles. Journal of the American Chemical Society, 124(45), 13540-13546. doi:10.1021/ja027270
    corecore